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ABSTRACT

We review the axiomatic foundations of subjective utility theory with a view
toward understanding the implications of each axiom. We consider three differ-
ent approaches, namely, the construction of utilities in the presence of canonical

probabilities, the construction of probabilities in the presence of utilities, and the .

simultaneous construction of both probabilities and utilities. We focus attention
on the axioms of independence and weak ordering. The independence axiom is
seen to be necessary to prevent a form of Dutch Book in sequential problems.

Our main focus is to examine the implications of not requiring the weak order
axiom. We assume that gambles are partially ordered. We consider both the con-
struction of probabilities when utilities are given and the construction of utilities
in the presence of canonical probabilities. In the first case we find that a partially
ordered set of gambles leads to a set of probabilities with respect to which the
expected utility of a preferred gamble is higher than that of a dispreferred
gamble. We illustrate some comparisons with theories of upper and lower prob-
abilities. In the second case, we find that a partially ordered set of gambles leads
to a set of lexicographic utilities, each of which ranks preferred gambles higher
than dispreferred gambles.

I. INTRODUCTION: SUBJECTIVE EXPECTED UTILITY ﬂwmcu
THEORY

The theory of (subjective) expected utility is a normative account of
rational decision making under uncertainty. Its well-known tenets are

Reprinted from W. Sieg (ed.), Acting and Reflecting: The Interdisciplinary Turn in
Philosophy (Dordrecht: Kluwer Academic Publishers, 1990), 143-170. © 1990 by
Kluwer Academic Publishers, with kind permission from Kluwer Academic
Publishers.

40

S1 L] = ™ S; = a a S

Ay |ony 015 O1n

a

Ai |oiy 0ij Oin

]

>3 Omi1 Omi 3
mj Omn

Figure 1. Canonical decision matrix

spotlighted by the familiar, canonical decision problem in which sij=
1,.. L is a partition, and o, is the outcome of option; (act;) in state;.
That is, acts are functions from states to outcomes. This problem is illus-
trated in Figure 1.

In the canonical decision problem, states are value-neutral and act
independent. The value of an outcome does not depend upon the state
in which it is rewarded, and the choice of an act does not alter the
agent’s opinion (uncertainty) about the states. In insurance terms, there
are no “moral hazards.”

General Assumption. Acts are weakly ordered by (weak) preference,
%, a reflexive, transitive relation with full comparability between any
two acts.

m.—.Em&é Expected Utility [SEU] Thesis. There is a real-valued
utility U(...), defined over outcomes, and a personal probability
p(...), defined over states, such that

A4 <A, ifandonlyif . p(s)Ula)< Y., p(s)U(os)).

1.:63 are several well-trodden approaches to the normative justifi-
cation of the SEU thesis, which we discuss in the remainder of this
section.

L.1. Utlity Given Probability

The .mm::.sm_ efforts of J. von Neumann and O. Morgenstern (1947)
provide necessary and sufficient conditions for an expected utility
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representation of preference over (simple) lotteries: acts specified by a
probability on a (finite subset of a) set of rewards. Their theory uses
one “structural” axiom and three axioms on preference <.

Structural Axiom. Acts are simple lotteries (L;), i.e., simple distribu-
tions over a set of rewards. The domain of acts is closed under convex
combinations of distributions — denoted by otL; + (1 -~ &) L,.

Weak-Order Axiom. X is a reflexive, transitive relation over pairs of
lotteries, with comparability between any two lotteries.

Independence Axiom. For all L, L,,L; (O < a<1),
L, <L, ifandonlyif al, +(1~a)Ls; < al, +(1-a)Ls.

Archimedean Axiom. For all (L, < L, < L;) 3(0< a, < 1),
BL +(1-B)Ls < L, <y +(1- ) Ls.

A particularly simple illustration of this theory involves lotteries
over three rewards (7, < r, < r3), where the reward r; is identified with
the degenerate lottery having point-mass P(r;)) =1 (i = 1, 2, 3). Follow-
ing the excellent presentation by Machina (1982), we have a simple
geometric model for what is permitted by expected utility theory.
Figure 2 depicts the consequences of the axioms.

According to the axioms, indifference curves (~) over lotteries are
parallel, straight lines of (finite) positive slope. L; is (strictly) preferred
to L;, L; < L; just in case the indifference curve for L; is to the left of
the indifference curve for L. Hence, in this setting, expected utility
theory permits one degree of freedom for preferences, corresponding
to the choice of a slope for the lines of indifference.

Another version of this example occurs with the decision theoretic
reconstruction of “most powerful” Neyman-Pearson tests of a simple
“null” hypothesis (h,) versus a simple rival alternative (k). We face the
binary decision given by the matrix:

he h
accept hg a b
reject hy c d

where we suppose that outcomes b and c are each dispreferred to
either outcomes a and d. In the usual jargon, c is the outcome of a type,;
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Figure 2. Curves of indifference with three rewards

error and b is the outcome of a type, error. By the assumption that
states are “act independent,” without loss of generality, we may rewrite
the matrix with utility outcomes:

ho hy
accept kg 0 —(1-x)
reject hg —X 0

where 0 < x < 1. The expected utility hypothesis requires that accept-
ing hy is not preferred to (X) rejecting h, just in case (1 — po)/py =
x/(1 — x), where p, is the “prior” probability of h,. .

Suppose we have the option of conducting an experiment E (with
a sample space of possible experimental outcomes denoted by Q),
where the conditional probabilities p(-lhy) and p(-lh,) over Q are
specified by the description of E. A (Neyman-Pearson) statistical test
of hy against h,, based on E, is defined by a critical region R c Q; with
the understanding that 4, is rejected iff R occurs. Associated with each
statistical test are two quantities: (¢, f8), where a= p(Rlh) is the prob-
ability of a type; error, and B = p(R‘lh,) is the probability of a type,
error.

According to the N-P theory, two tests may be compared by their
(@, B) numbers. Say that T, dominates T; if (o, < @), (B, < B,) and at
least one of these inequalities is strict. This agrees with the ranking of
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Table 1. The “best” B-values for twelve
o-values and six experiments

G = 250 .333 .400 .500 1.000 1.333
o« B -values

010 047 250 .431 628 908 942
020 026 172 327 521 .854 .904
.030 017 131 268 452 811 .871
.040 012 106 227 401 773 .841
045 011 .096 210 .380 .756 .828
.050 009 088 .196 361 .740 814
055 008 080 .184 344 725 802
.060 007 074 .172 328 710 .789
.070 006 .064 .153 300 .683 .766
.080 005 .055 .137 276 657 .744
.090 004 .049 123 255 633 .722
100 003 043 111 236 611 .702

tests by their expected utility since (prior to observing the outcome of
the experiment) the expected utility of test T, having errors (a, f), is
given by:

~x- p(R&ho) +(1-x) - p(R&M)]=~[x @~ po +(1-x)- B-(1- py)],

so that T, < T; if T, dominates T, (except for the trivial cases of cer-
tainty: po = 0 or po = 1, when T, ~ T, is possible still — but then there
hardly is need for a “test” of h).

Given an experiment E, there are numerous, mutually undominated
tests based on E. For example, consider the family of undominated tests
of hy: pt= 0 versus h;: p=1 from the observation of a normally distrib-
uted random variable X ~ N[y, o?], with specified variance o2 These
are just the family of “best,” i.e., most powerful tests of ki, versus h, —
which, by the Neyman-Pearson lemma, is the family of likelihood ratio
tests for the datum x. Table 1 lists some (¢, ) values for undominated
tests from six such experiments: o = 1/4; = 1/3; = 2/5; = 1/2; = 1; and
=4/3.

Three of these families, corresponding to o= 1/3; 6= 1/2; and 6 =
4/3, are depicted by the curves in Figure 3. The graph shows the tan-
gents to these three curves at o= 0.05. The “0.05-o-level” tangents are
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Figure 3. Families of (e, B) pairs for undominated tests

not parallel. A statistical test of 4, versus his a lottery involving the
three prizes —x, —(1 - x), 0. As before, if the preferences among such
tests satisfy the expected utility hypothesis, then the indifference curves
(of equally desirable tests) are parallel straight lines.

In Figure 3, these indifference curves have negative slopes equal to
—xpo/(1 ~ x)(1 ~ py). (The slopes are negative because smaller (o, B)
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values are better.) Thus, expected utility Emo&\.mm in conflict with the
popular convention of choosing the “best” test with a fixed Q._m.<o_, e.g.,
o =0.01 or & = 0.05. That is, when testing simple hypotheses, in order
to agree with expected utility theory the choice of @ must reflect .Sm
precision of the experiment. (See also Lindley [1972, p. 14], s&m gives
this argument for the special case of “0-1” losses.) In a @:.SE .Emwn-
ential” (non-decision-theoretic) Bayesian treatment of testing a simple
hypothesis versus a composite alternative, Jeffreys (1971, p. 248) argues
for the same caveat about constant o-levels. .

A dramatic illustration of this lesson can be seen with the aid of
Table 1. Suppose an agent prefers undominated tests with o= o.o”u. over
rivals. Then, for the experiment corresponding to o= 1/4, test T, is pre-
ferred to test Ty, where (o4 = 0.01, 8, =0.047) and (@, = 0.05, B, = o.ooov.
Likewise, for the experiment corresponding to ¢ = 4/3, test T, is pre-
ferred to test Ty, where (a3 =0.09, B5=0.722) and (0, =0.05, B, = 0.814).
However, test Ts, the “50-50” mixture of tests T; and Tj, is preferred to
test T, the “50-50” mixture of tests T, and Ty, as (& = o.bm, Bs = o.m.mmv
and (o = 0.05, B = 0.412), so that Ts dominates Ts. This is E.m decision-
theoretic analogue of Cox’s (1958) example involving the failure of the
ancillarity principle within Neyman-Pearson theory.

1.2. Probability Given Utility

The “Dutch Book” argument, tracing back to Ramsey (1931) mwa
deFinetti (1937), offers prudential grounds for action in oocmo:.EJ\
with personal probability. Under several “structural” mmmcavcou.w
about combinations of stakes (that is, assumptions about the combi-
nation of wagers), your betting policy is consistent (“coherent”) only
if your “fair” odds are probabilities. .

A simple bet on/against event E, at oddsof r: 1 — ﬁ with a total
stake S > 0 (say, bets are in $ units), is specified by its payoffs, as
follows:

E —E

bet on E win (1-r)S lose rS
bet against E lose (1 -r)S win r$

(By writing S < 0 we can reverse betting “on” or “against.”) .
The general assumption (that acts are weakly ordered by <) entails
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that there is a preference among the options betting on, betting against
and abstaining from betting (whose consequences are “status quo,” or
net $0, regardless of whether E or —E). The special (“structural”)

assumptions about the stakes for bets require, in addition: .

a. Given an event E, a betting rate r: 1 — r'and a stake S, your prefer-
ences satisfy exactly one of three profiles. Either:
betting on < abstaining < betting against E,
or betting on ~ abstaining ~ betting against E,
or betting against < abstaining < betting on E.

b. The (finite) conjunction of favorable/fair/unfavorable bets is favor-
able/fair/unfavorable. (A conjunction of bets is favorable in case it
is preferred to abstaining, unfavorable if dispreferred to abstaining,
and fair if indifferent to abstaining.)

¢. Your preference for outcomes is continuous in rates; in particular,
each event E carries a unique “fair odds” r for betting on E.

Note: It follows from these assumptions that your attitude towards a
simple bet is independent of the size of the stake.

Dutch Book Theorem. If your fair betting odds are not probabilities,
then your preferences are incoherent, i.e., inconsistent with the pref-
erence for sure-gains. Specifically, then there is some “favorable”
combination of bets which is dominated by abstaining, i.e., some
“favorable” combination where you pay out in each state of a finite
(exhaustive) partition. (See Shimony (1955), for an elegant proof using
the linear structure of these bets.)

‘The Dutch Book argument can be extended to include conditional
probability, p(-I), through the device of called-off bets. A called-off bet
on (against) H given E, at odds of r: (1 — r) with total stake S (>0), is
specified by its payoffs, as follows.

bet on H win (1-1)S lose1S 0 (the bet is called off)
bet against H lose (1-1)S winrS 0 (the bet is called off)

By including called-off bets within the domain of act to be judged
favorable/indifferent/unfavorable against abstaining, and subject to the
same structural assumptions (a—c) imposed above, coherence of “fair”
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Figure 4. Anscombe-Aumann “horse lotteries”

betting odds entails: 7mg) Tz = Fanr), Where “rug)” mm. the :mm:” called-
off” odds on H given E. This result gives the basis for interpreting con-
ditional probability, p(HIE), by the fair “called-off:” odds 7z, for then

we have:
p(HE)- p(E) = p(H N E),

the axiomatic requirement for conditional probabilities.

L3. Simultaneous Axiomatizations of (Personal) Probability
and Utility

We distinguish two varieties:

i. without extraneous “chances,” as in Savage’s (1954) theory.

ii. with extraneous “chances,” a continuation of the von Neumann-
Morgenstern approach, as in Anscombe & Aumann’s (1963) Emnc\
of “horse lotteries.” Horse lotteries are a generalization of lotteries,

as illustrated in Figure 4.

An outcome of act A,, when state S; obtains (when “horse;” wins), is
the von Neumann-Morgenstern lottery L;. The >=m85_um,>c.5m==
theory is the result of taking the von Zm:Em::-ZOHmoumﬁmB axioma-
tization of < (the Weak-order, Independence and Archimedean pos-
tulates), and adding an assumption that states are value-neutral.
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II. INDEPENDENCE AND CONSISTENCY IN
SEQUENTIAL CHOICES

We are interested in relaxing the “ordering” postulate, without aban-
doning the normative standard of coherence (consistency) and without
losing the representation (“measurement”) of our modified theory.
First, however, let us compare two programs for generalizing expected
utility in order to justify the concern for consistency:

Program —I - Delete the “Independence” Postulate. Ilustrations:
Samuelson (1950); Kahneman & Tversky’s “Prospect Theory”
(1979); Allais (1979); Fishburn (1981); Chew & Macrimmon (1979);
McClennen (1983); and especially Machina (1982, 1983 — which has
an extensive bibliography).

Program —O - Delete the “Ordering” Postulate. Tlustrations: I. J.
Good (1952); C. A. B. Smith (1961) - related to the Dutch Book argu-
ment; 1. Levi (1974, 1980); Suppes (1974); Walley & Fine (1979);
Wolfenson & Fine (1982); Schick (1984).

And in Group Decisions: Savage (1954, §7.2); Kadane & Sedransk
(1980); and Kadane (1996) — applied to clinical trials.

Also, “regret” models involve a failure of “ordering” if we define the
relation < by their choice functions, which violate (Sen’s properties o
and S, 1977) “independence of irrelevant alternatives”: Savage (1954,
§13.5); Bell & Raiffa (1979); Loomes & Sugden (1982); and Fishburn
(1983).

A CRITICISM OF PROGRAM —I. Consider elementary problems where
we apply the modified theory —I to simple lotteries. Thus, we discuss
the case, like the von Neumann-Morgenstern setting, where “proba-
bility” is given and we try to quantify (represent) the value of
“rewards.”

There is a technical difficulty with the theory that results from just
the two postulates of “weak-ordering” and the usual “Archimedean”
requirement. It is that these two are insufficient to guarantee a real-
valued “utility” representation of < (see Fishburn, 1970, §3.1). We can
avoid this detail and also simplify our discussion by assuming that
lotteries are over (continuous) monetary rewards; we assume that
lotteries have $-equivalents and more $ is better. ,

Under these assumptions and to underscore the normative status of
coherence, let us investigate what happens when a particular conse-
quence of “independence” is denied.
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Mixture Dominance (“Betweenness”). If lotteries Ly, L, are each
preferred (dispreferred) to a lottery Ls, so too each convex combina-
tion of L, and L, is preferred (dispreferred) to L.

Here is an illustration of sequential inconsistency for a failure of
mixture dominance. Let L, ~ L, ~ $5.00, but 0.5L, + 0.5L, ~ $6.00: the
agent prefers the “50-50” mixture of L, and L, to each of them sepa-
rately. Then, by continuity of (ordinal) utility over dollar payoffs, there
is a fee, —§$ ¢ such that, e.g.,

Ly ~L, <0.5(Ly — &)+ 0.5(L; — €) ~$5.75< 0.5L, +0.5L,,

where L; — ¢ denotes the modification of L; obtained by reducing each
payoff in L; by the fee $ &. Assume $4.00 < (L;— €)(i = 1, 2).

Consider two versions of a sequential decision problem, depicted by
the decision trees in Figures 5 and 6.“Choice” nodes are denoted by a
[ and “chance” nodes are denoted by e. In the first version (Figure 5),
at node A the agent may choose between plans 1 and 2. These lead to
terminal choices at nodes B, depending upon how a “fair” coin lands
at the intervening chance nodes. If the agent chooses plan 1 (at A).and
the coin lands “heads,” he faces a (terminal) choice between lottery L,
and the certain prize of $5.50. If, instead, the coin lands “tails,” he faces
a (terminal) choice between L, and the certain prize of $5.50.

The decision tree is known to the agent in advance. He can antici-
pate (at A) how he will choose at subsequent nodes, if only he knows
what his preferences will be at those junctures. In the problem at hand,
we suppose the agent knows that, at B, he will not change his prefer-
ences over lotteries. (There is nothing in the flip of the coin to warrant
a shift in his valuation of specified, von Neumann-Morgenstern lot-
teries.) For example, according to our assumptions, at A he prefers a
certain $5.50 to the lottery L,. Thus, we assume that at B, too, he prefers
the $5.50 to L,.

Then, at A, the agent knows which terminal options he will choose
at nodes B and plans accordingly. If he selects plan 1, he will get $5.50.
If he selects plan 2, he will get lottery L; — £ with probability 1/2 and
he will get lottery L, — £ with probability 1/2. But this he values $5.75;
hence, plan 2 is adopted.

The decision program —I requires the “ordering” postulate for ter-
minal decisions. Thus, at choice nodes such as B, the agent is indiffer-
ent between lotteries that are judged equally desirable (~) according
to his preferences (<). The second version of the sequential choice
problem (Figure 6) results by replacing the lotteries at the (terminal)
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$5.50 <«

$5.50 ~ 1
Ly

$5.50 «

—
S
*N

85.75 ~ 2

Ly—~¢ «

$4.00

O - designates choice points
® - designates chance points
= - designates chosen alternative

B

.Emﬁo 5. First <$m.mo= of the sequential decision: an illustration of sequential
incoherence for a failure of mixture dominance (“betweenness™). At chojce node

nodes B by their sure-dollar equivalents under ~. In this version, by the
same H..mmmoE.:mq the agent rejects plan 2 and adopts plan 1. This is an
Inconsistency within the program since, at nodes B, the agent’s prefer-
ences are given by the weak-ordering, <, yet his (sequential) choices
do not respect the indifferences, ~, generated by <.

Let us call such inconsistency in sequential decisions an episode of
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JA Ly
“heads” 85.50 <
a=.5
3
$5.50 ~ 1 L,
(b) N $5.50 <
> - %huln A”
less than “heads” $4.00
$5.50 ~ 2 a=.
%buln E=
(d) N $4.00
O - designates choice points B

@® - designates chance points

=> — designates chosen alternative
Figure 6. Second version of the sequential decision: an illustration of mm.acmmam_
incoherence for a failure of mixture dominance (“betweenness”). At choice node

A option 1 is preferred to option 2. The tree results by replacing L;— £ (i = 1,2)
from Figure 6.5 with $-equivalents under <.

“sequential incoherence.” Then, we can generalize this example and
show:

Theorem. If < is a weak order (1) of simple lotteries satisfying mro
Archimedean postulate (3) with sure-dollar equivalents for lotteries,
and if X respects stochastic dominance in payoffs (a greater chance at
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more $ is better), then a failure of “independence” (2) entails an
episode of sequential incoherence (see Seidenfeld, 1988).

However, as Levi’s decision theory — one which relaxes the order-
ing postulate rather than “independence” — avoids sequential inco-
herence (Levi, 1986), we see that it is not necessary for decisions to
agree with expected utility theory in order that they be sequentially
coherent.

[I. REPRESENTATION OF PREFERENCES WITHOUT
“ORDERING”

Next, we discuss the representation of an alternative theory falling
within program —O: to weaken the “ordering” assumption. Again, let
us begin with the more elementary problem where we try to quantify
values for the rewards when “probability” is given - analogous to the
von Neumann-Morgenstern setting.

Let R={r:i=1,...)} be a countable set of rewards, and let L =
{L: L is a discrete lottery, a discrete P on R}. As before, define the
convex combination of two lotteries al, + (I -a)l,=Ls by Py =
0Py + (1 — @)P,. We consider a theory with three axioms:

Axiom 1. Preference < is a strict partial order, being transitive and
irreflexive. (This weakens the “weak order” assumption, since non-

comparability, ~, need not be transitive.)

Axiom 2. (independence). For all L,, Ly, and Ls,and foralll > > 0,

Li<Lyiffal, +(1-a)L; < al, +(1- a)L,.

Axiom 3. A suitable Archimedean requirement. (Difficulties with
axiom 3 are discussed below.).

Say that a real-valued utility U agrees with the partial order < iff
2 BRUR) < Y, B(r)U(r) whenever L, < L,
We hope to show that < is represented by a (convex) set of agree-

ing utilities. That is, we seek to show there is a (maximal) set of agree-
ing utilities, U<, where (by the unanimity rule)
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L <L, iffforeach UeU=<Y R(nUr)<Y, BHUF).

Aside on Related Results. Aumann (1962) proved that when R is
finite, there exists a real-valued utility agreeing with <, provided
axioms like 1-3 hold. A lottery is simple if its support is a finite set of
rewards. Kannai (1963) extended Aumann’s result to simple lotteries
on a countable reward set by strengthening the Archimedean axiom 3.
(More precisely, these theories deal with a reflexive and transitive par-
tial order — which identifies indifferences — not just with the irreflexive
part <.) These two studies, as well as Fishburn’s (1970, ch. 9) simplifi-
cation of Aumann’s work, use an embedding of the partial order in a
separable, normed linear space. Their proofs have a common theme.
Represent a lottery L by a vector of its probability P, with coordinates
corresponding to the elements of R. Because a lottery is simple, all
but finitely many of its coordinates are zero. Call a vector difference
(P, — P,) “favorable” when L; < L,. The set of “favorable” vectors
forms a convex cone, and a Separating Hyperplane Theorem (Klee,
1955) yields a utility. (However, the separability assumption prohibits
using this method when, e.g., the reward set R is uncountable.)

There are three observations which help to explain some of the dif-
ficulties that arise in carrying out our project for representing prefer-
ences given by partial orders.

1. The usual Archimedean axiom won'’t do; it is too restrictive.

Example 1. R = {r, < r* < r;} but for no 0 < & < 1 is it the case that
ary + (1 — a)r; < r*. However, this partial order can be represented
by a set of utilities, U = {U,: 0 < x < 1} with U,(ro) = 0, U(r;) =1 and
U,(r*) = x. This is illustrated in Figure 7.

Hence, in general, to represent a partial order generated by a set
of utilities, a weakening of the usual Archimedean postulate is
necessary.

2. Two different convex sets of utilities can generate the same partial
order. That is, given convex sets U, and U,, we can difine the partial
orders <, and <, according to the “unanimity” rule. However,

Example 2. It may be that <; = <,, though U, # U,. See Figure 8 for
an illustration.

54

Iy

Qa.?.*v r*

0 To

0 < X < 1

Figure 7. Example of restrictions of the usual Archimedean axiom

U(ra)

U(r1)

designates an open boundary
— designates a closed boundary

Figure 8. Two convex sets of utilities which generate the same partial order. The
two (convex) mma. differ by the presence of the point identified by the arrow.
The common partial order is generated by the “unanimity” rule

When we shift from representing indeterminate utility (given
determinate “chances”) to the dual task of representing indetermi-
nate probability (given a determinate utility — by assuming favorable
bets combine according to the Dutch Book assumptions — see §1v),
this phenomenon causes difficulties for the representation of condi-

tional probabilities. (Also, contrast this with Aumann’s example, 1964
p.210.) u

55



3. Last, though the representation of indeterminate preferences over
lotteries (given determinate “chances”) is by convex sets of util-
ities — similarly the dualized representation of indeterminate betting
odds (given bets are in stakes which behave like utiles — see §1v) is
by convex sets of probabilities — when we turn to the simultaneous
representation of indeterminate preferences and beliefs (through
“horse lotteries”), convexity may fail. The set {(P,U)} of probability-
utility pairs which agree with a partially ordered preference over
horse lotteries may not be convex (nor even connected). However,

convexity is assured for both sets: {(P, U*): U* fixed} and {(P*, U):
P* fixed}.

Here is an example of non-convexity of the set of probability-utility
pairs agreeing with a partial order, <, over “horse lotteries.”

Example 3. There are two uncertain states (5, —S) and three rewards
(ro, 7*, 1), with r; preferred to ry, r, < ry, but where r* is < — incom-

parable with either r, or r,. Consider the two acts, A1 and A2, defined
by the payoffs:

S =S
Al rn n
A2 . or*

Fix the utilities U(ry) = 0 and U(ry) = 1, and let P(S) denote the prob-

ability of state S. Then Figure 9 shows the regions where Al is pre-
ferred or A2 is preferred.

This example shows why the proof techniques based on the Sepa-
rating Hyperplane results are inappropriate for identifying the
(maximal) set of pairs: {(P, U): (P, U) agrees with <} for “horse
lotteries.”

Our proof procedure for giving a representation of a strict pre-
ference over horse lotteries is to modify Szpilrajn’s (1930) argument
that, by transfinite induction, every partial order may be extended to a
total order. The modification involves preserving the other axioms:
“Independence,” “Archimedes,” and “value-neutrality” of states. In the
Appendix we illustrate this technique for representing strict partial

orders of von Neumann-Morgenstern lotteries by convex sets of
(lexicographic) utilities.

56

CD) Alis preferred (convex)
& A2is preferred (not convex)

— P(S) =

i
i

i

Ul

TN

nill

Figure 9. Regions of preference for Example 3

IV. REPRESENTATION OF BELIEFS WITHOUT “ORDERING”

By appeal to the Separating Hyperplanes theorem, we may generalize
the Dutch Book argument to establish the coherence of beliefs for
partially ordered gambles, including the case (discussed by C. A. B.
Smith, 1961) of “medial” odds. Consider the finite partition of states
{spj=1,..., n}, and define a gamble as a vector of # real-values, 4; =
(ra, - . ., Tim), Where r; is the (utility of the) reward generated by A; when
state s; obtains. Denote the constant gamble 7, = 0 (corresponding to
“no bet,” or “status quo”) by 0, and define the set of favorable gambles,
T, to be those which are preferred to O in pairwise comparisons. As in
the Dutch Book argument, we make structural assumptions about the

value of the rewards, assuring that the magnitudes of the rewards
behave like utilities.

STRUCTURAL ASSUMPTIONS

i. Weak dominance over O.If r; > 0 (all j) with a strict inequality for
some j, then A, is favorable.
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(0,1,0)[s2]

open at
this vertex

Closed along
any part of

this face
" designated
by ***

(0,0,1)[s3] (1,0,0)[s1]

Closed at these vertices

Figure 10. Different convex sets of probabilities which generate the same partial
order under the “unanimity” rule

ii. Scalars. If A, is favorable, so too is cA; = (...cry ... forc>0.

iii. Convex combinations. If 4, and A, are favorable, so too is the
convex combination xAs + (1 - x)A;=(...,xr;+ (1 - x)ry, .. ), for
0<x<1.

REPRESENTATION THEOREMS RELATING TO F
Theorem 1. Coherence of F:

i. O ¢ Fiff there is a maximal, non-empty convex set P of probabil-
ities with the property that VA; e F,Vp e P, Zp(s)r; > 0.

ii. Moreover, if Fis open, or if FuU {0} is closed, then A4; Fprovided
Vp e P, Zp(spr; > 0.

We may extend this to include conditional probabilities by paral-

leling the device of “called-off” bets, used to show coherence of con-
ditional odds in the Dutch Book argument. Then:
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(0,0,1)[s3] (1,0,0)[s1]

Convex set P1 =HE”EH=

Figure 11. Supporting lines determined by odds alone

Theorem 2. Coherence of conditionally favorable gambles: Let
Fe(c F) be the set of favorable gambles, called off in case event E fails
to oceur, i.e., VA; € Fg,ry;=0if s; € E€. Assume that O ¢ F,

i. Then VA; € Fr, Vp e P, Ip(s|E)r; > 0.
ii. Moreover, if A; is called off when E fails and either Fj is open or
Few {O} is closed, then A; € Fi provided Vp e P, Zp(siE)r; > 0.

In both theorems, the closure conditions imposed in clause (ii)
reflect the severity of the problem illustrated in Figure 10, which is dual
to the problem illustrated in Example 2, p. 54.

The favorable gambles F are a subset of those preferred to “no bet”
under the partial order (<j), gemerated by the “unanimity” rule
adapted to the set . Denote the closure of F by cl( ), and denote by
JF~ the set that results from taking each favorable gamble and chang-
ing the sign of its payoffs. It is straightforward to verify that Pis a
unit set (expected utility theory) just in case <5 is a weak-order. That
occurs if and only if cl(F) UF~ = R" (the space of all gambles on the
n states s;). In other words, when P is not a unit set, there will be
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(0,1,0)[s2]

Convex set P1 _EEE
Convex set P2 !

Upper odds Upper odds

for s2:s3
.given not-sl

for s2:s1
given not-s3

Lower odds Lower odds

(0,0,1)[s3] N\ (1L0.0s1)
Lower odds for s1:s3 Upper odds

given not-s2

Figure 12. Supporting lines determined by odds and called-off bets

gambles A, and A, with A; <p A, but where none of A;, A7, A,, or A;
is favorable.

We illustrate sets P for the elementary case of three states, n = 3 in
Figures 11-13. The figures use barycentric coordinates. Each trinomial
distribution on {s;,5,,53} is a point in the simplex having vertices:
((100) (010) (001)). Figure 10 shows different convex sets of probabil-
ities that generate the same preferences under the “unanimity” rule.
Figure 11 shows the supporting lines for a set P, which arises merely
by specifying odds at which betting “on” and “against” the (atomic)
events s; become favorable. The set P, is the largest one agreeing with
these upper and lower probabilities. As noted by Levi (1980, p. 198),
typically, infinitely many convex subsets of P, carry the same proba-
bility intervals,

Figure 12 illustrates the supporting lines for a set 2, given, in addi-
tion, by bounds on the favorable “called-off” bets Fie. P is properly
included within P, has the same upper and lower wuogc:_:mm and is
the largest set agreeing with all six pairs of unconditional and condi-
tional odds. As Levi (1974, and 1980, p. 202) points out, we can distin-
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(0,1,0)[s2]

(0,0,1)[s3] (1,0,0)[s1]

A convex set such that no proper subset has the I
same upper and lower probabilities for the atoms. Y

Figure 13. Supporting lines which overdetermine the vertices

guish between two sets having different supporting lines, e. g., P, and
P,, with a gamble that is favorable for only one of them.

Figure 13 illustrates how just a few supporting lines can overdeter-
mine the vertices (and thereby all) of a convex set. The simplest case
is when the supporting lines corresponding to the upper and lower
unconditional odds fix the convex set, Ps, uniquely. That is, there is no
proper subset of P; with the same upper and lower probabilities.
Hence, the set of favorable gambles, F, is fully determined once these
upper and lower betting odds are given. (This corrects a minor error
in Levi’s (1980, p. 202) presentation. There, the set “B,” has upper and
lower unconditional and conditional odds which overdetermine its ver-
tices. Thus, the proper subset “B;” does not have the same range of
unconditional and conditional odds as “B,”.) We plan to investigate the
computational issues relating to the measurement of a convex set, P,
using the set of favorable gambles, F. How efficiently can we locate
supporting lines which overdetermine the vertices of a set?

61



V. SUMMARY

We have illustrated a variety of axiomatic and consistency argu-
ments used to justify the normative status of expected utility theory —
section 1. When (only) the “independence” axiom is denied, inconsis-
tency in sequential choice results — section 1. We argue, instead, for a
generalization of expected utility theory by relaxing the “ordering”
postulate. The resulting theory admits representations in terms of sets
of probabilities and utilities — section m. By analogy with the Dutch
Book betting argument, we prove that coherence of a partially ordered
(strict) preference over gambles (as identified by the set of its strictly
“favorable” gambles) is represented by a convex set of probabilities —
section 1v. Sometimes this representation is fixed by a very few number
of comparisons, making measurement feasible.

APPENDIX: REPRESENTATION OF A STRICT PARTIAL ORDER
BY A CONVEX SET OF LEXICOGRAPHIC UTILITIES

Defs. Let REW be a set of rewards, REW = {r,: a < B}. A lottery, L, is
a discrete probability distribution over REW, L = {p(-):p(rs) =0, Zp(rs)
= 1}. Let Supp(L) be the support of p(-). (A simple lottery is a lottery
with finite support.) Denote by Lggw the set of simple lotteries over
REW. Given two lotteries L; = {p:(-)} and L, = {p,(")}, define their
convex combination by Ls = xL; + (1 — x)L, = {xpi(*) + (1 = x)p2(*)}.
Then, Lggw is a (Herstein & Milnor, 1953) mixture set.

The following two are our axioms for a strict partial order, >, over
Lzew.

Axiom 1. > is a transitive and irreflexive relation on Lggw X L REW-

Axiom 2 (Independence). For all L,, L, and Ls, and for each 0 <
x<1:

xLi(1-x)Ls > xL, +(1-x)L; iff L, > L,.

Def. When neither L, > L, nor L, > L, we say the two lotteries are
incomparable (by preference), which we denote by L, ~ L,.

Incomparability is not transitive, unless > is a weak order.
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Theorem 1. Let REW be a reward set of arbitrary cardinality and let
L gew be the set of simple lotteries over these rewards. Let > be a strict
partial order defined over elements of Lzgw. Then there is an exten-
sion of I to >* which is a total ordering of Lzzy satisfying axiom 2.

Combining Theorem 1 with Hausner’s (1954) important result (since
a total order is a “pure” weak order), we arrive at the following
consequence.

Corollary 1. There is a lexicographic real-valued utility, U, which
agrees with >, i.e., if L, > L, then Ey[L,] < Ey[L,).

(Note: A lexicographic utility U is a (well-ordered) sequence of real-
valued utilities, O = {U,: U, s a real-valued utility, for each o< f8}. When
O is a lexicographic utility, then Eu[L,] < Ey[L,] is said to obtain if
Ey[L.] < Ey[L,] at the first utility U, in the sequence U which gives
L, and L, different expected values, provided one such U, exists.)

Proof of Theorem 1. Let {L,:y< k (yranging over ordinals, k a cardi-
nal)} be a well ordering of Lggy. Let > be a partial order on Lgew
satisfying axioms 1 and 2. By induction, we define a sequence of exten-
sions of &>, {>,: A < k}, where each >, preserves both axioms and where
D is a total order on Lggw. The partial order >, corresponding to stage
A in the k sequence of extensions, is obtained by contrasting lotteries
L, and Lg, where T'(e,8) = A under the canonical well ordering I" of
k x k — k. We define extensions for successor and limit ordinals
separately.

Successor Ordinals. Suppose 1>, satisfies axioms 1 and 2. Let I'la,p)
= A+ 1 and (for convenience) suppose max[a,f] = B. Define >, as
follows.

Case 1: If o= f3, then >y,; = >,.

Otherwise,
Case 2: L, >y, L, iff either

(i) Ly>s L, (s0 >, extends B>,), or
(i) Lo~ Lp& I(0<x<1)withxL,+ (1 - x)Lg >y
(or=)xL,+ (1 -x)L,.

Limit Ordinals. Let T'(o,f) = A < k, a limit, and (for convenience)
again assume max [o,f] = B.

Case 1: If a = f, then take >, = Us,(D>5). That is, L, >, L, obtains
just in case 3(6< A)L, >5 L,.

Case 2: If o # f3, then define >; as: L, 1>, L, iff either (i) 3(6 < ML,
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>; L, (so >; extends all preceding >3), or (ii) V(8§ < )L, ~5 Ly &
(6 < D30 < x < 1) with xL, + (1 — x)Ls >;5 (or =) xL, + (1 — x)L,,
Next, we show (by transfinite induction) that >, satisfies the two
axioms, assuming (= [>,) does. First, consider successor stages where
the extension is of the form >,,,.

Axiom 1 - irreflexivity. We argue indirectly. Assume, for some
lottery L,, L, >4 L,. Since L, >, L, is precluded, by hypothesis of
induction, it must be that (ii): 3(0 < x < 1) with

xL, +(1-x)Lg >, (or =) xL, +(1-x)L,.

Since >; satisfies axiom 2, Ly >; (or =) L, If either Ly, L, or
Lg= L, then 1>,,; = &>;, contradicting the hypothesis L, > Ly

Axiom I - transitivity. Assume L, >, L, and L, >, L,. There are
four cases to consider, since each >;,; relation may obtain in one of two
ways. The combination where clause (ii) is used for both provides the
greatest generality (the other cases being analyzed in the same way).
Thus, we have: 3(0 < x, y < 1) with

xLy, +(1—x)Ls>;(or =) xL, +(1—x)L,
and also
yL, +(1-y)Ls >, (or =) yLy+(1- y)L,.
Since t>, satisfies axioms 1 and 2, we may “mix” these to yield
w(xLy +(1-x)Lg) +(1~w)(yL, +(1- y)L;)
> (or =)
w(xLy +(1=x)Lg) +(1-w)(yLy + (1= y)Ly).

Choose w - x = (1 — w)y, cancel the common “L,” terms (according to
axiom 2), regroup (by “reduction”) to arrive at: 3(0 < v < 1)

vL, +(1-v)Ls > (or =) vL,, + (1~ V)L,

where v = wx/(1 — y + wy). Hence, L, >;,; L,, as desired.
Axiom 2. We are to show L, >, L, iff

xLy +(1=x)Ly >paxL,+(1-x)L,.

There are two cases.

Case 1: L, >, L, occurs just in case xL, + (1 — x)L,, >xxL, +
(1 - x)L, (by axiom 2). By the definition of >,,;, we obtain the
desired result:
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xL, +(1=x)Ly, >3, xL, +(1-x)L,.
Case 2: vL,+ (1 -v)Lg>; (or =) vL, + (1~ v)L, occurs just in case

yLy +(1- )WL, +(A-v)Lg) 1>, (or=)
yLy +(1=y)(vLy, +(1-v)L,),

according to axiom 2. Choose y = v(1 — x)/[v(1 - x) + x], regroup terms
to yield: w(xL, + (1 = x)L,) + (1 —x)Lg>; (or =) w(xL, + (1 - x)L,) +
(1-x)L,, where w=v/[v(1 — x) + x]. By the definition of >,,;, we obtain
the desired result:

xL, +(1-x)Ly, > xL, +(1-x)L,,

This establishes axioms 1 and 2 for successor stages, ..

The argument with limit stages is similar.

Axiom I ~ irreflexivity. Again, we argue indirectly. Assume L, >; L,.
By hypothesis of induction —3(§ < A) L, >; L,. So we may assume L,
#Lpand V(6<A)L,~sLgand I(6< A)F(0 < x < 1) with xL,+ (1 —x)L,
>s (or =) xL, + (1 — x)L,. But by the hypothesis of induction >
satisfies axiom 2, hence, L; >; (or =) L,, a contradiction.

Axiom 1 — transitivity. Assume L,>; L, and L, >, L,. Again there
are four cases, and again we discuss the most general case where clause
(i) is used to obtain these >, — preferences. Thus, we have: 3(0 < x,
y<1)3(4, & < A) with

xL, +(1-x)Ls>; (or =) xL, + (1-x)L,
and also
YLy +(1=y)Ly >5 (01 =) yLy +(1- y)Lo.
Without loss of generality, let § = max[8,8']. Then
YLy + (1= y)Ly >5 (or =) yLy, + (1~ y)L,

since I>; extends >5. Now, repeat the “mixing” and “cancellation” steps
used with the parallel case for successor stages. This yields the desired
conclusion: L, >, L,.

Axiom 2. For this axiom, the reasoning is the same as used with
axiom 2 in the successor case, modified to apply to the appropriate
(preceding) stage >

Last, define >, = Us (>5). Hence, B>, is a total order of Lggw which
satisfies axiom 2. Every two (distinct) lotteries are compared under D>,
ie,V(La# Lge Lrgw) LoD Lgor Ly L, O
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Next, we state without proof a simple lemma.

Lemma 1. If lexicographic utilities U; and U, both agree with the strict
partial order >, then so too does their convex mixture xU; + (1 -x)0,.
Also, sets of lexicographic utilities generate a strict partial order
according to the “unanimity” rule, as we now show.

Lemma 2. Each set of lexicographic utilities U = {O: U is a lexico-
graphic utility over REW} induces a strict partial order > (satisfying
axioms 1 and 2) under the “unanimity” rule:

Loy Ly iff V(O eU) Ey[L,]< Eo[L—B]

Proof. The lemma is evident from the fact that each lexicographic
utility induces a weak-ordering <y of L gey, satisfying axiom 2, accord-
ing to the definition:

Lq <o Ly iff Eo[L,]< Eo[Lg].

Recall, Eo[L,] < E[Lg] obtains if Ey{L,] < E, [L)] for the first utility
U (if one exists) in the sequence U which assigns L, and Ly different
expected utilities. Each utility U (hence, <y), supports axiom 2 as:

Ey[L.)< Ey[Lg) i Ey[xL, +(1-x)L,]< Ey[xLs +(1-x)L,]. O

As is evident from the proof of Theorem 1, if L ~ L’, i.e., if neither
L > L’ nor L’ > L, then there are alternative extensions of I> in which
L>; L’ and in which L’ >, L. This observation, together with the two
lemmas and Corollary 1, establishes the following representation for
strict partial orders .

Theorem 2. Each strict partial order I> over a set Lggy is identified by
amaximal, convex set ‘U of lexicographic utilities that agree with it. In
symbols, > = ¢, where > is the strict partial order induced by U
under the “unanimity” rule.

Of course, in light of problem (2) (p. 54), it can be that there is a
proper (convex) subset U’ c ‘U where t> = I>¢; as well; hence, the max-
imality of ‘U is necessary for uniqueness of the representation.
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1.3

A Representation of Partially
Ordered Preferences

TEDDY SEIDENFELD, MARK J. SCHERVISH,
AND JOSEPH B. KADANE

ABSTRACT

This chapter considers decision-theoretic foundations for robust Bayesian sta-
tistics. We modify the approach of Ramsey, deFinetti, Savage and Anscombe,
and Aumann in giving axioms for a theory of robust preferences. We establish
that preferences which satisfy axioms for robust preferences can be represented
by a set of expected utilities. In the presence of two axioms relating to state-
independent utility, robust preferences are represented by a set of
probability/utility pairs, where the utilities are almost state-independent (in a
sense which we make precise). Our goal is to focus on preference alone and to
extract whatever probability and/or utility information is contained in the pref-
erence relation when that is merely a partial order. This is in contrast with the
usual approach to Bayesian robustness that begins with a class of “priors” or
“likelihoods,” and a single loss function, in order to derive preferences from these
probability/utility assumptions.
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